National Repository of Grey Literature 13 records found  1 - 10next  jump to record: Search took 0.01 seconds. 
Study of thermal properties of selected coloids
Křivánková, Kateřina ; Krouská, Jitka (referee) ; Zmeškal, Oldřich (advisor)
The bachelor thesis is focused on the study of the thermal properties of colloidal systems, especially the properties of emulsions (water, oil), which can be used in the cosmetic industry as an essential component of various lotions and creams and in the food industry. In the introduction the first defined thermo-physical processes (conduction, convection and radiation) and temperature measurement (stationary, transient). Furthermore defined physical parameters (heat and thermal conductivity, heat capacity), that are determined using transient methods. The measured data were collected and analyzed by using the EMA (Electrical Measurement Analyser) and the HarFA (Harmonic and Fractal Image Analyser). The results will be used to determine the optimum conditions for the production of cosmetics and dietary supplements.
Optimalisation of thermal properties of solar cell modules
Dohnalová, Lenka ; Matiašovský, Peter (referee) ; Zmeškal, Oldřich (advisor)
The topic of presented diploma thesis is study of thermal properties structures of photovoltaic cells. The main goal of this thesis is study of ways of heat spreading from volume and planar materials (conduction, convection and radiation). Then it is needed to determine contributions of heat spread from laminated photovoltaic cell and compare them to results measured by transient pulse method, step wise method and with thermo-camera using. At the beginning of this thesis it will be needed to define heat and ways it’s spread. Heat is closely connected with temperature. That is reason why will be there spoken about temperature and methods of its measuring. Than there will be defined basic thermo-physical parameters of materials. Thermo-physical parameters of materials will be measured by transient methods that will be characterized later and by thermo-camera. This thesis deals with photovoltaic cells, so there will be described their structure, properties, utilization and way of their production. Subsequently after the definition of all needed terms the experimental part of this thesis will be introduced. It will be needed to characterize measured volume material and define its thermo-physical parameters. Using the pulse transient method, step wise method and thermo-camera there will be measured the thermal response of PMMA sample, nonlaminated photovoltaic cell and also samples of laminated photovoltaic cells. Findings of all described methods will be finally compared.
Study of Electric and Dielectric Properties of Alkali-Activated Aluminosilicate with Increased Electrical Conductivity
Florián, Pavel ; Pavlík, Zbyšek (referee) ; Matiašovský, Peter (referee) ; Zmeškal, Oldřich (advisor)
This dissertation deals with the study of electric and dielectric properties of composite structures on the base of alkali-activated aluminosilicates with admixtures of various carbon particles. These materials fabricated from alkali-activated blast furnace slag, quarz sand, natrium water glass as alkali activator, water, dispersant and small amount of carbon admixture (carbon black, graphite powder, carbon fibers or carbon nanotubes) to increase electric conductivity may be used for example to construction of snow-melting, deicing and self-monitoring systems. Their current-voltage characteristics and impedance spectra were used for determination of electric and dielectric properties of these structures. The equivalent circuits were used for evaluation of impedance spectra. The results were correlated with thermal properties of these structures.
Study of Electric and Thermal Properties of Building Materials with Conductive Additives
Veselá, Jana ; Krouská, Jitka (referee) ; Zmeškal, Oldřich (advisor)
This work focuses on study of electric, dielectric and thermal properties of composite electrically conductive building materials composed of magnesium oxychloride cement and small amount of graphene and graphite admixtures. The aim of this work was to determine thermal properties of materials and create a model of electric current conduction mechanism in material. Electric and dielectric properties were determined with using of transient direct current measurement of resistivity and impedance spectroscopy. Thermal properties were investigated using transient step-wise method and fractal analysis of thermocamera data. Electrical resistivities of materials are determined from the direct current measurements. Model of transport of electrical charge carriers was evaluated by fitting impedance data to an equivalent electrical circuit model. Thermal conductivities and thermal capacities were determined by means of thermal measurements. The presented properties for example can be used for assessment of suitability for specific construction applications.
Characterization of perovskite solar cell materials by transient techniques
Nakládal, Martin ; Zmeškal, Oldřich (referee) ; Novák, Vítězslav (advisor)
This thesis deals with the study of the lifetime of charge carriers in perovskite single crystals. The principle of perovskite solar cells is formulated, their main structures are characterized and the history of the development of perovskite solar cells is summarized, especially in terms of efficiency. The properties of perovskite single crystals with perovskite solar cells are compared. For measurement purposes, transient methods, impedance spectroscopy, load characteristics and the dependence of sensitivity and photocurrent on the wavelength of incident radiation are described. The practical part deals with the method of measuring and evaluating the lifetime of charge carriers in the investigated perovskite single crystals.
Study of thermal properties of phase change materials
Křivánková, Kateřina ; Krouská, Jitka (referee) ; Zmeškal, Oldřich (advisor)
The diploma thesis studies the thermal properties of materials, heat storage based on phase transformation. The aim of this study was to measure the thermal properties of materials using a heat accumulation phase transformation, particularly a commercial material available from the Phase Change Material Products Ltd. under the name PlusICE A118. Such materials are referred to as PCM (from Eng. Phase Change Material), and are used for instance as heat insulators in construction. First described the phase transformation of substances in general, then was defined accumulation of thermal energy. We have also described methods for determining the temperature (thermal analysis, stationary and transietní methods). Finally defined thermophysical parameters (thermal capacity, thermal conductivity, thermal conductivity), which were determined transient step method.
Study of energy accumulation during phase change of paraffin wax
Lapčíková, Tereza ; Krouská, Jitka (referee) ; Zmeškal, Oldřich (advisor)
This thesis deals with the study of the process of energy storage during phase transformation, the so-called latent heat for commercial materials of the Rubitherm® RT line (Rubitherm Technologies GmbH) with applications in the construction industry. The thermophysical properties of Rubitherm® RT35HC, RT28HC and RT18HC materials differing in phase transformation temperature were investigated using the transient method. For the Rubitherm® RT35HC material a value of the thermal conductivity coefficient in the solid phase of 0.21 W/m/K and in the liquid phase of 0.23 W/m/K was determined. The specific heat capacity value in the solid phase was determined to be 1980 J/kg/K and in the liquid phase 1995 J/kg/K. For Rubitherm® RT28HC, the value of the thermal conductivity coefficient in the solid phase was determined to be 0,23 W/m/K and the value of the specific heat capacity in the solid phase was determined to be 1997 J/kg/K. For the Rubitherm® RT18HC material, a liquid phase thermal conductivity coefficient of 0,27 W/m/K and a liquid phase specific heat capacity of 2010 J/kg/K were determined. Using differential scanning calorimetry (DSC), the melting temperature of the Rubitherm® RT28HC sample was determined at 27.43 °C and solidification at 23.51 °C, while for the Rubitherm® RT35HC sample melting occurred at 36.51 °C and solidification at 31.86 °C and 32.28 °C. In the experimental part of this work, modifications were made to the measuring apparatus used in such a way that it could be used for the study of materials that change their state of matter during the experiment.
Study of Electric and Thermal Properties of Building Materials with Conductive Additives
Veselá, Jana ; Krouská, Jitka (referee) ; Zmeškal, Oldřich (advisor)
This work focuses on study of electric, dielectric and thermal properties of composite electrically conductive building materials composed of magnesium oxychloride cement and small amount of graphene and graphite admixtures. The aim of this work was to determine thermal properties of materials and create a model of electric current conduction mechanism in material. Electric and dielectric properties were determined with using of transient direct current measurement of resistivity and impedance spectroscopy. Thermal properties were investigated using transient step-wise method and fractal analysis of thermocamera data. Electrical resistivities of materials are determined from the direct current measurements. Model of transport of electrical charge carriers was evaluated by fitting impedance data to an equivalent electrical circuit model. Thermal conductivities and thermal capacities were determined by means of thermal measurements. The presented properties for example can be used for assessment of suitability for specific construction applications.
Characterization of perovskite solar cell materials by transient techniques
Nakládal, Martin ; Zmeškal, Oldřich (referee) ; Novák, Vítězslav (advisor)
This thesis deals with the study of the lifetime of charge carriers in perovskite single crystals. The principle of perovskite solar cells is formulated, their main structures are characterized and the history of the development of perovskite solar cells is summarized, especially in terms of efficiency. The properties of perovskite single crystals with perovskite solar cells are compared. For measurement purposes, transient methods, impedance spectroscopy, load characteristics and the dependence of sensitivity and photocurrent on the wavelength of incident radiation are described. The practical part deals with the method of measuring and evaluating the lifetime of charge carriers in the investigated perovskite single crystals.
Study of Electric and Dielectric Properties of Alkali-Activated Aluminosilicate with Increased Electrical Conductivity
Florián, Pavel ; Pavlík, Zbyšek (referee) ; Matiašovský, Peter (referee) ; Zmeškal, Oldřich (advisor)
This dissertation deals with the study of electric and dielectric properties of composite structures on the base of alkali-activated aluminosilicates with admixtures of various carbon particles. These materials fabricated from alkali-activated blast furnace slag, quarz sand, natrium water glass as alkali activator, water, dispersant and small amount of carbon admixture (carbon black, graphite powder, carbon fibers or carbon nanotubes) to increase electric conductivity may be used for example to construction of snow-melting, deicing and self-monitoring systems. Their current-voltage characteristics and impedance spectra were used for determination of electric and dielectric properties of these structures. The equivalent circuits were used for evaluation of impedance spectra. The results were correlated with thermal properties of these structures.

National Repository of Grey Literature : 13 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.